Dynamic quantum circuits in the QCCD architecture

ERASE Townhall @ Yale Michael Foss-Feig, Quantinuum

Overview of H2 Current configuration: 56 qubits (112 ions), 4 operational gates zones

Overview of H2 Current configuration: 56 qubits (112 ions), 4 operational gates zones

Overview of H2 Current configuration: 56 qubits (112 ions), 4 operational gates zones

© 2025 Quantinuum. All rights reserved.

Advantages of the QCCD architecture:

• High connectivity (arbitrary at present!)

Advantages of the QCCD architecture:

- High connectivity (arbitrary at present!)
- High fidelity quantum operations

Advantages of the QCCD architecture:

- High connectivity (arbitrary at present!)
- High fidelity quantum operations
- Low cross-talk

Advantages of the QCCD architecture:

- High connectivity (arbitrary at present!)
- High fidelity quantum operations
- Low cross-talk

Primary disadvantage:

• It is (relatively) slow

Advantages of the QCCD architecture:

- High connectivity (arbitrary at present!)
- High fidelity quantum operations
- Low cross-talk
- It is (relatively) slow

arXiv 2209.12889

Classical

QUANTINUUM

Long-range entanglement from adaptive circuits

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

Quantum tensor networks

Infect neighbor with probability Q

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

Quantum tensor networks

Infect neighbor with probability Q

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

Quantum tensor networks

Infect neighbor with probability Q

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

Quantum tensor networks

Infect neighbor with probability Q

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

As a function of p = P/Q, there is a phase transition between an absorbing state ($p > p_c$: disease dies out) and an active state ($p < p_c$: pandemic)

Quantum tensor networks

Infect neighbor with probability Q

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

Quantum tensor networks

As a function of p = P/Q, there is a phase transition between an absorbing state ($p > p_c$: disease dies out) and an active state ($p < p_c$: pandemic)

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

Quantum tensor networks

As a function of p = P/Q, there is a phase transition between an absorbing state ($p > p_c$: disease dies out) and an active state ($p < p_c$: pandemic)

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

() QUANTINUUM

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

arXiv 2302.01917, 2302.03029, arXiv:2305.03766

arXiv 2209.12889

Classical

Long-range entanglement from adaptive circuits

arXiv 2302.01917, 2302.03029, arXiv:2305.03766

Quantum tensor networks

Key insight from classical tensor network methods:

N qubits

N qubits -----

5 qubits

Key insight from classical tensor network methods:

9

arXiv:2210.08039

Greedy heuristic for choosing measurement order:

Every time you measure a qubit, pick the one who's causal cone initialization requires the smallest number of new qubits

arXiv:2210.08039

QUANTINUUM

arXiv:2210.08039

5 qubits

© 2025 Quantinuum. All rights reserved.

 $H = -\sum_{j} X_{j} X_{j+1} - \lambda \sum_{j} Z_{j}$

Quantum critical point

 $\langle X_{j}X_{k}\rangle \sim \frac{1}{|j-k|^{\gamma}} (\gamma = -\frac{1}{q})$

arXiv 2305.01650

arxiv.org/abs/cond-mat/0512165 arxiv.org/abs/quant-ph/0610099

20 qubits 128 site system Only 160 TQ gates

© 2025 Quantinuum. All rights reserved.

 $\langle X_{j}X_{k}\rangle \sim \frac{1}{|j-k|^{\gamma}} \begin{pmatrix} \gamma \cdot -\frac{1}{q} \end{pmatrix}$

arXiv 2305.01650

Bounded causal cones lead to "tame" classical contraction cost:

Things that would be nice to do but are very hard:

- High bond dimension
- dMERA
- MERA + time evolution (transport, thermalization, etc.)

All of these can be done on a quantum computer with exponentially less resources in space and time

arXiv 2305.01650

How many qubits? Count isometries

arXiv 2305.01650

X How many qubits? Count isometries

 \checkmark Set by $\chi_{\star}(constant width of causal cone)$

arXiv 2305.01650

X How many qubits? Count isometries
✓ Set by X * (constant width of causal cone)
- Can even sample the full MERA output
ω/ ~ logL mutiplicative overhead

Quantinuum Systems Roadmap

Quantinuum Systems Roadmap

) QUANTINUUM

